A Novel Tumor-Activated Prodrug Strategy Targeting Ferrous Iron Is Effective in Multiple Preclinical Cancer Models

J. Med. Chem., 2016, 59 (24), pp 11161–11170

Tanja Krainz Current Literature Seminar December 24, 2016

Iron and Cancer

Iron enables the function of

- Vital iron and haem-containing enzymes involved in respiratory complexes (mitochondrial enzymes)
- Enzymes involved in DNA synthesis and cell cycle
- detoxifying enzymes such as peroxidase and catalase
- Iron is essential for cell replication, metabolism and growth

Nature Reviews | Cancer

Iron (Uptake and Efflux) in Normal vs. Cancer Cells

$$Fe^{2+}$$
 \bigcirc + H_2O_2 \longrightarrow Fe^{3+} \bigcirc + HO^-

$$Fe^{3+}$$
 \bigcirc + H_2O_2 \longrightarrow Fe^{2+} \bigcirc + $HOO \cdot + H^+$

Nature Reviews | Cancer

Fe(II)-Dependent Drug Delivery

- Labile Fe(II) promotes Fenton chemistry
- Fenton reaction of a peroxidic prodrug coupled to release drug payloads
- Drug species can be conjugated via an amine or alcohol function, potentially allowing the intrinsic bioactivity and/or toxicity of the drug species to be blocked before Fe(II) dependent release at the desired side of action.

Synthesis of Microtubule Inhibitor

Org. Lett. **2014**, 16, 571/6/**5**9779

Design, Synthesis and Validation in Cell Culture of a Microtubule Toxin

> Drug release is both efficient and peroxide dependent

Cytotoxicity in a Panel of Cancer Cell Lines

" E_{50} ratio" \rightarrow Normalizing the activity of conjugate 2 to that of its cytotoxic payload 1 to compare efficiency of payload release from 2 across different cell lines

In Vivo PK/PD Studies of Duocarmycin Conjugate

Duocarmycin isolated from Streptomyces bacteria. Known for extreme cytotoxicity. Extremely potent antitumor antibiotics

	T1/2 [h]	Clearance [mL min-1 kg-1]	Volume of Distribution [L/kg]		
5	3.8	20	6.7		
6	20.4	31.3	55		
Tanja Krainz @ Wipf Group Tanja Krainz @ Wipf Group					

PK Profile and In Vivo tolerability

16 5

Plasma concentrations

d.

Xenograft Studies

MDA-MB-231 xenograft bearing female SCID-beige mice

IP administration on Q4d schedule(3 total doses)

Conclusion

- Trioxolane-mediated Fe(II)-dependent drug delivery acts as a new approach for cell/tissue selective drug targeting
- Two prototypical trioxolane drug conjugates bearing cytotoxins with distinct mechanisms of cellular toxicity
- Confirmed that intrinsic cytotoxicity of these agents can be decreased in conjugated forms (and yet fully realized following cell or tumor selective release at their intended side of action)

1	15	15	39
H	P	P	Y
Hydrogen	Phosphorus	Phosphorus	Yttrium
1.008	30.974	30.974	88.906
67	3	Dy Dysprosium 162.50	16
HO	Li		S
Holmium	Lithium		Sulfur
164.930	6.941		32.066

